欢迎光临《计算力学学报》官方网站!
几何非线性分析的高效高阶无网格法
Efficient High Order Meshfree Method for Geometrically Non-Linear Analysis
投稿时间:2020-03-05  修订日期:2020-05-22
DOI:
中文关键词:  无网格  几何非线性  数值积分  无单元伽辽金法  导数修正
英文关键词:meshfree  geometrical non-linearity  numerical integration  element-free Galerkin method  derivatives correction
基金项目:科学挑战专题(TZ2018002),中央高校基本科研业务费专项资金(DUT18LK04),国家自然科学基金面上项目(11672062)资助
作者单位E-mail
陈嵩涛 大连理工大学 724143156@qq.com 
段庆林 大连理工大学 qinglinduan@dlut.edu.cn 
马今伟 大连理工大学  
摘要点击次数: 120
全文下载次数: 0
中文摘要:
      准确高效地处理几何非线性对于材料破坏等大变形过程的数值分析至关重要。考虑到无网格法具有易于形成高阶近似函数等诸多优点,本文发展了几何非线性分析的高阶无网格法。采用上一载荷步收敛的构形作为计算的参考构形,位移本质边界条件由罚函数法施加。为提高计算效率,将针对线性问题发展的二阶一致3点积分格式(Quadratically Consistent 3-point integration scheme,QC3)拓展到考虑构形变化的几何非线性分析,大幅度减少了所需的积分点数目。数值结果表明,所发展的高阶无网格法能够准确有效地处理几何非线性问题,而且在计算效率、精度以及应力场光滑性等方面均表现出显著优势。
英文摘要:
      Accurate and efficient treatment of geometrical non-linearity is crucial to the numerical analysis of large deformation process such as material failure. In view of the merits of meshfree methods such as their convenience to construct high order approximation functions, this paper presents the high order meshfree method for geometrically nonlinear analysis. The configuration converged in the last loading step is employed as the reference configuration. The essential boundary condition in displacement is enforced by the penalty method. To improve the computational efficiency, the quadratically consistent 3-point (QC3) integration scheme which is originally developed for linear problems is extended to geometrically non-linear analysis where the change in configuration must be considered. As consequence, the number of quadrature points required for domain integration is dramatically reduced. Numerical results show that the proposed high order meshfree method is able to deal with geometrically non-linear problems accurately and exhibits remarkable superiorities in computational efficiency, accuracy and smoothness of the resulting stress fields.
  查看/发表评论  下载PDF阅读器
您是第7415260位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计